Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30439558

RESUMO

In order to provide year round spawning broodstock, lumpfish (initial size 746 g and 24.9 cm) were reared under four different photoperiod regimes from January 2017 to July 2018. One group was reared under simulated natural photoperiod (LDN, control group) for Tromsø (70°N). The second group was transferred to continuous light (LD240) on 30 January 2017 and reared at LD24:0 throughout the trial period. Two compressed and phase advanced photoperiods were also established. Both groups were moved from LDN to LD24:0 on 30 January 2017, and after that reared at compressed natural photoperiods where the annual photoperiod was compressed down to six months (L6) or nine months (L9) for the duration of the study. Spawning time was shifted in both compressed groups during both years of the study. Spawning activity in the second year of the study was higher and followed more closely the expected spawning period in the compressed and the LDN groups. Spawning in the LD240 group was spread out over the experimental period with no distinct peak in spawning. A seasonal and pronounced drop in condition factor was found for females in the L9, L6 and the LDN groups. This post-spawning loss in condition was closely related to the spawning activity of each group. The current findings suggest that photoperiod has a strong influence on the timing of lumpfish maturation and can be used as an efficient and inexpensive tool to secure lumpfish reproduction operations i.e. year-round supply of egg and milt and/or timing with optimal temperature regimes.


Assuntos
Perciformes/fisiologia , Fotoperíodo , Reprodução , Animais , Feminino , Masculino
3.
PLoS One ; 12(4): e0175468, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28403165

RESUMO

Triploid Atlantic salmon (Salmo salar L.) may play an important role in the sustainable expansion of the Norwegian aquaculture industry. Therefore, the susceptibility of triploid salmon to common infections such as salmonid alphavirus (SAV), the causative agent of pancreas disease (PD), requires investigation. In this study, shortly after seawater transfer, diploid and triploid post-smolts were exposed to SAV type 3 (SAV3) using a bath challenge model where the infectious dose was 48 TCID50 ml-1 of tank water. Copy number analysis of SAV3 RNA in heart tissue showed that there was no difference in viral loads between the diploids and triploids. Prevalence reached 100% by the end of the 35-day experimental period in both infected groups. However, prevalence accumulated more slowly in the triploid group reaching 19% and 56% at 14 and 21 days post exposure (dpe) respectively. Whereas prevalence in the diploid group was 82% and 100% at the same time points indicating some differences between diploid and triploid fish. Both heart and pancreas from infected groups at 14 dpe showed typical histopathological changes associated with pancreas disease. Observation of this slower accumulation of prevalence following a natural infection route was possible due to the early sampling points and the exposure to a relatively low dose of virus. The triploid salmon in this study were not more susceptible to SAV3 than diploid salmon indicating that they could be used commercially to reduce the environmental impact of escaped farmed fish interbreeding with wild salmon. This is important information regarding the future use of triploid fish in large scale aquaculture where SAV3 is a financial threat to increased production.


Assuntos
Infecções por Alphavirus/veterinária , Alphavirus/fisiologia , Doenças dos Peixes/virologia , Salmo salar/genética , Infecções por Alphavirus/genética , Infecções por Alphavirus/virologia , Animais , Diploide , Feminino , Doenças dos Peixes/genética , Predisposição Genética para Doença , Masculino , Pâncreas/virologia , Salmo salar/virologia , Triploidia
4.
Vet Res ; 47(1): 102, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27760562

RESUMO

Salmonid alphavirus subtype 3 (SAV3) causes pancreas disease (PD) and adversely affects salmonid aquaculture in Europe. A better understanding of disease transmission is currently needed in order to manage PD outbreaks. Here, we demonstrate the relationship between viral dose and the outcome of SAV3 infection in Atlantic salmon post-smolts using a bath challenge model. Fish were challenged at 12 °C with 3 different SAV3 doses; 139, 27 and 7 TCID50 L-1 of seawater. A dose of as little as 7 TCID50 L-1 of seawater was able to induce SAV3 infection in the challenged population with a substantial level of variation between replicate tanks and, therefore, likely represents a dose close to the minimum dose required to establish an infection in a population. These data also confirm the highly infectious nature of SAV through horizontal transmission. The outcome of SAV3 infection, evaluated by the prevalence of viraemic fish, SAV3-positive hearts, and the virus shedding rate, was positively correlated to the original SAV3 dose. A maximal shedding rate of 2.4 × 104 TCID50 L-1 of seawater h-1 kg-1 was recorded 10 days post-exposure (dpe) from the highest dose group. The method reported here, for the quantification of infectious SAV3 in seawater, could be useful to monitor PD status or obtain data from SAV3 outbreaks at field locations. This information could be incorporated into pathogen dispersal models to improve risk assessment and to better understand how SAV3 spreads between farms during outbreaks. This information may also provide new insights into the control and mitigation of PD.


Assuntos
Infecções por Alphavirus/veterinária , Alphavirus , Doenças dos Peixes/virologia , Salmo salar/virologia , Infecções por Alphavirus/transmissão , Infecções por Alphavirus/virologia , Animais , Doenças dos Peixes/transmissão , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Carga Viral , Eliminação de Partículas Virais , Microbiologia da Água
5.
Gen Comp Endocrinol ; 235: 108-119, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27288639

RESUMO

In recent years rapidly growing research has led to identification of several fish leptin orthologs and numerous duplicated paralogs possibly arisen from the third and fourth round whole genome duplication (3R and 4R WGD) events. In this study we identify in Atlantic salmon a duplicated LepRA gene, named LepRA2, that further extend possible evolutionary scenarios of the leptin and leptin receptor system. The 1121 amino acid sequence of the novel LepRA2 shares 80% sequence identity with the LepRA1 paralog, and contains the protein motifs typical of the functional (long form) leptin receptor in vertebrates. In silico predictions showed similar electrostatic properties of LepRA1 and LepRA2 and high sequence conservation at the leptin interaction surfaces within the CHR/leptin-binding and FNIII domains, suggesting conserved functional specificity between the two duplicates. Analysis of temporal expression profiles during pre-hatching stages indicate that both transcripts are involved in modulating leptin developmental functions, although the LepRA1 paralog may play a major role as the embryo complexity increases. There is ubiquitous distribution of LepRs underlying pleiotropism of leptin in all tissues investigated. LepRA1 and LepRA2 are differentially expressed with LepRA1 more abundant than LepRA2 in most of the tissues investigated, with the only exception of liver. Analysis of constitutive LepRA1 and LepRA2 expression in brain and liver at parr, post-smolt and adult stages reveal striking spatial divergence between the duplicates at all stages investigated. This suggests that, beside increased metabolic requirements, leptin sensitivity in the salmon brain might be linked to important variables such as habitat, ecology and life cycle. Furthermore, leptins and LepRs mRNAs in the brain showed gene-specific variability in response to long term fasting, suggesting that leptin's roles as modulator of nutritional status in Atlantic salmon might be governed by distinct genetic evolutionary processes and distinct functions between the paralogs.


Assuntos
Leptina/metabolismo , Salmo salar , Animais , Evolução Biológica , Comportamento Alimentar , Receptores para Leptina/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-26103556

RESUMO

Leptin and ghrelin are important regulators of energy homeostasis in mammals, whereas their physiological roles in fish have not been fully elucidated. In the present study, the effects of leptin and ghrelin on adipogenesis, lipolysis and on expression of lipid metabolism-related genes were examined in rainbow trout adipocytes in vitro. Leptin expression and release increased from preadipocytes to mature adipocytes in culture, but did not affect the process of adipogenesis. While ghrelin and its receptor were identified in cultured differentiated adipocytes, ghrelin did not influence either preadipocyte proliferation or differentiation, indicating that it may have other adipose-related roles. Leptin and ghrelin increased lipolysis in mature freshly isolated adipocytes, but mRNA expression of lipolysis markers was not significantly modified. Leptin significantly suppressed the fatty acid transporter-1 expression, suggesting a decrease in fatty acid uptake and storage, but did not affect expression of any of the lipogenesis or ß-oxidation genes studied. Ghrelin significantly increased the mRNA levels of lipoprotein lipase, fatty acid synthase and peroxisome proliferator-activated receptor-ß, and thus appears to stimulate synthesis of triglycerides as well as their mobilization. Overall, the study indicates that ghrelin, but not leptin seems to be an enhancer of lipid turn-over in adipose tissue of rainbow trout, and this regulation may at least partly be mediated through autocrine/paracrine mechanisms. The mode of action of both hormones needs to be further explored to better understand their roles in regulating adiposity in fish.


Assuntos
Adipócitos/metabolismo , Grelina/metabolismo , Leptina/metabolismo , Oncorhynchus mykiss/metabolismo , Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Expressão Gênica , Grelina/genética , Grelina/farmacologia , Leptina/genética , Leptina/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Microscopia Confocal , Oncorhynchus mykiss/genética , PPAR gama/genética , PPAR gama/metabolismo , Receptores de Grelina/metabolismo , Receptores para Leptina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Aquat Toxicol ; 142-143: 33-44, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23948076

RESUMO

The detrimental effects of acid rain and aluminium (Al) on salmonids have been extensively studied, yet knowledge about the extent and rate of potential recovery after exposures to acid and Al episodes is limited. Atlantic salmon smolts in freshwater (FW) were exposed for 2 and 7-day episodes (ACID2 and ACID7, respectively) to low pH (5.7±0.2) and inorganic aluminium (Ali; 40±4 µg) and then transferred to good water quality, control water (CW; pH 6.8±0.1; <14±2 µg Ali). Al accumulation on gills after 2 and 7 days of acid/Al exposure was 35.3±14.1 and 26.6±1.8 µg g(-1) dry weight, respectively. These elevated levels decreased 2 days post transfer to CW and remained higher than in control (CON; 5-10 µg Ali) for two weeks. Plasma Na(+) levels in ACID2 and ACID7 smolts decreased to 141±0.8 and 138.6±1.4mM, respectively, and remained significantly lower than CON levels for two weeks post transfer to CW. Similarly, plasma Cl(-) levels in ACID7 smolts (124.3±2.8mM) were significantly lower than in CON, with Cl(-) levels remaining significantly lower in ACID7 (126.2±4.8 mM) and ACID2 (127.6±3.7 mM) than in CON following 9 and 14 days post-transfer to CW, respectively. ACID2 and ACID7 smolts sustained elevated plasma glucose levels post transfer to CW suggesting elevated stress for more than a week following exposure. While gill Na(+), K(+)-ATPase (NKA) activity was only slightly affected in ACID2 and not in ACID7 smolts in FW, acid/Al exposure resulted in a transient decrease in NKA activity following SW exposure in both groups. Acid/Al episodes had limited impact on isoform specific NKA α-subunit mRNA during exposure. However, the transfer of ACID2 and ACID7 smolts to CW showed an increase in NKAα1a mRNA (the FW isoform) and inhibited the up-regulation of NKAα1b (the SW isoform), probably resulting in higher abundance of the enzyme favouring ion uptake. Gill caspase 3B gene transcription did not change in acid/Al treated smolts, indicating no increased apoptosis in gills. ACID2 and ACID7 treatments resulted in lower smolt-related gill transcription of the gene encoding the tight junction protein claudin 10e compared to CON, while the gene encoding claudin 30 showed lower mRNA expression only after 11 days SW exposure in ACID7 fish. Our data suggest that acid/Al conditions affect ion perturbations through a combination of alteration of the preparatory increase in paracellular permeability and negative impact on the SW type NKA α-subunit mRNA transcripts, and raise major concerns regarding the recovery of physiological disruption in smolts following acid/Al exposure. Smolts may require more than two weeks to fully recover from even short moderate episodes of acid/Al exposure. Acid/Al exposure thus probably has greater impact on salmon populations than previously acknowledged.


Assuntos
Ácidos/toxicidade , Alumínio/toxicidade , Brânquias/efeitos dos fármacos , Salmo salar/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Glicemia/análise , Exposição Ambiental , Regulação da Expressão Gênica/efeitos dos fármacos , Hematócrito/veterinária , Íons/sangue , Distribuição Aleatória , Salmo salar/genética , ATPase Trocadora de Sódio-Potássio/genética , Tempo
8.
Gen Comp Endocrinol ; 187: 48-59, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23583470

RESUMO

In the current study we describe the identification of novel leptin B homologous gene/s in the four salmonid species Atlantic salmon (Salmo salar), rainbow trout (Oncorhynchus mykiss), brown trout (Salmo trutta) and Arctic charr (Salvelinus alpinus). Homology modeling of Salmo salar (Ss) LepB1/B2 suggests that the protein satisfies parameters as long-chain four helical cytokine family and that the basic structural pattern of the protein follows that of human leptin (Zhang et al., 1997). Importantly, the docking studies suggested the SsLepB has binding affinity to the AA residues that identify the leptin binding and FNIII domains of the SsLep receptor (Rønnestad et al., 2010). Phylogenetic analyses support that LepB paralogs have most probably originated by 4R whole genome duplication (WGD) before speciation of the salmonid lineages. LepB1 and LepB2 genes are both present in the two closest relatives, the Atlantic salmon and the brown trout, while rainbow trout and charr have only preserved the long LepB1 variant in their genome. We have defined the sites of SsLepB mRNA expression at key life stages in Atlantic salmon and found that SsLepB1 and SsLepB2, although to different extent, were expressed in redundant and mostly complementary fashion in brain and gills throughout the lifecycle, suggesting that this pair of paralogs is likely undergoing early stages of subfunctionalization. Furthermore, we have quantified the expression profiles of SsLepB genes and of other two recently duplicated salmon leptins (SsLepA1, SsLepA2) during early development and show evidence that in fish, as in mammals and amphibians, leptin could play important roles in growth and development. This study provides an essential groundwork to further elucidate structural and functional evolution of this important hormone in salmonids as well as in other teleosts.


Assuntos
Leptina/genética , Salmonidae/genética , Animais , Clonagem Molecular , Evolução Molecular , Proteínas de Peixes/genética , Oncorhynchus mykiss/genética , Filogenia , Salmonidae/classificação , Truta/genética
9.
Gen Comp Endocrinol ; 175(1): 153-62, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22094208

RESUMO

The growth-promoting effects of in vivo growth hormone (GH) treatment were studied in relation to size and lipid content of energy stores including liver, mesentery, white muscle and belly flap in rainbow trout. In order to elucidate endocrine interactions and links to regulation of growth, adiposity and energy metabolism, plasma levels of GH, insulin-like growth factor I (IGF-I), leptin (Lep) and ghrelin, were assessed and correlated to growth and energy status. In addition tissue-specific expression of lepa1 mRNA was examined. Juvenile rainbow trout were implanted with sustained-release bovine GH implants and terminally sub-sampled at 1, 3 and 6 weeks. GH increased specific growth rate, reduced condition factor (CF) and increased feed conversion efficiency resulting in a redistribution of energy stores. Thus, GH decreased mesenteric (MSI) and liver somatic index (LSI). Lipid content of the belly flap increased following GH-treatment while liver and muscle lipid content decreased. Independent of GH substantial growth was accompanied by an increase in muscle lipids and a decrease in belly flap lipids. The data suggest that the belly flap may function as an energy buffering tissue during episodes of feeding and lean growth. Liver and muscle lipids were positively correlated to body weight, indicating a size-dependent change in adiposity. Hepatic lepa1 mRNA positively correlated to MSI and CF and its expression decreased following GH treatment, coinciding with decreased hepatic lipid content. Plasma Lep was positively correlated to MSI and belly flap lipid content, suggesting that Lep may communicate energy status. In summary, the observed GH tissue-specific effects on lipid metabolism in rainbow trout highlight the complex physiology of the energy reserves and their endocrine control.


Assuntos
Metabolismo Energético/fisiologia , Hormônio do Crescimento/fisiologia , Homeostase/fisiologia , Metabolismo dos Lipídeos/fisiologia , Oncorhynchus mykiss/crescimento & desenvolvimento , Oncorhynchus mykiss/fisiologia , Adiposidade/fisiologia , Animais , Metabolismo Energético/efeitos dos fármacos , Grelina/fisiologia , Hormônio do Crescimento/farmacologia , Homeostase/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/fisiologia , Leptina/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Músculo Esquelético/metabolismo , Especificidade de Órgãos
10.
Gen Comp Endocrinol ; 170(2): 290-8, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20627104

RESUMO

Smolting is a hormone-driven developmental process that is adaptive for downstream migration and ocean survival and growth in anadromous salmonids. Smolting includes increased salinity tolerance, increased metabolism, downstream migratory and schooling behavior, silvering and darkened fin margins, and olfactory imprinting. These changes are promoted by growth hormone, insulin-like growth factor I, cortisol, thyroid hormones, whereas prolactin is inhibitory. Photoperiod and temperature are critical environmental cues for smolt development, and their relative importance will be critical in determining responses to future climate change. Most of our knowledge of the environmental control and endocrine mediation of smolting is based on laboratory and hatchery studies, yet there is emerging information on fish in the wild that indicates substantial differences. Such differences may arise from differences in environmental stimuli in artificial rearing environments, and may be critical to ocean survival and population sustainability. Endocrine disruptors, acidification and other contaminants can perturb smolt development, resulting in poor survival after seawater entry.


Assuntos
Migração Animal , Sistema Endócrino/fisiologia , Meio Ambiente , Salmão/fisiologia , Animais , Disruptores Endócrinos/farmacologia , Sistema Endócrino/efeitos dos fármacos , Água Doce , Crescimento e Desenvolvimento/efeitos dos fármacos , Hormônios/fisiologia , Salmão/crescimento & desenvolvimento , Salmão/metabolismo , Água do Mar
11.
Gen Comp Endocrinol ; 168(1): 55-70, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20403358

RESUMO

The present study reports the complete coding sequences for two paralogues for leptin (sLepA1 and sLepA2) and leptin receptor (sLepR) in Atlantic salmon. The deduced 171-amino acid (aa) sequence of sLepA1 and 175 aa sequence for sLepA2 shows 71.6% identity to each other and clusters phylogenetically with teleost Lep type A, with 22.4% and 24.1% identity to human Lep. Both sLep proteins are predicted to consist of four helixes showing strong conservation of tertiary structure with other vertebrates. The highest mRNA levels for sLepA1 in fed fish (satiation ration=100%) were observed in the brain, white muscle, liver, and ovaries. In most tissues sLepA2 generally had a lower expression than sLepA1 except for the gastrointestinal tract (stomach and mid-gut) and kidney. Only one leptin receptor ortholog was identified and it shares 24.2% aa sequence similarity with human LepR, with stretches of highest sequence similarity corresponding to domains considered important for LepR signaling. The sLepR was abundantly expressed in the ovary, and was also high in the brain, pituitary, eye, gill, skin, visceral adipose tissue, belly flap, red muscle, kidney, and testis. Fish reared on a rationed feeding regime (60% of satiation) for 10 months grew less than control (100%) and tended to have a lower sLepA1 mRNA expression in the fat-depositing tissues visceral adipose tissue (p<0.05) and white muscle (n.s.). sLepA2 mRNA levels was very low in these tissues and feeding regime tended to affect its expression in an opposite manner. Expression in liver differed from that of the other tissues with a higher sLepA2 mRNA in the feed-rationed group (p<0.01). Plasma levels of sLep did not differ between fish fed restricted and full feeding regimes. No difference in brain sLepR mRNA levels was observed between fish fed reduced and full feeding regimes. This study in part supports that sLepA1 is involved in signaling the energy status in fat-depositing tissues in line with the mammalian model, whereas sLepA2 may possibly play important roles in the digestive tract and liver. At present, data on Lep in teleosts are too scarce to allow generalization about how the Lep system is influenced by tissue-specific energy status and, in turn, may regulate functions related to feed intake, growth, and adiposity in fish. In tetraploid species like Atlantic salmon, different Lep paralogues seems to serve different physiological roles.


Assuntos
Leptina/metabolismo , Filogenia , Receptores para Leptina/metabolismo , Salmo salar/classificação , Salmo salar/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Leptina/química , Leptina/genética , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Receptores para Leptina/química , Receptores para Leptina/genética , Salmo salar/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
12.
Aquat Toxicol ; 97(3): 250-9, 2010 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-20079944

RESUMO

Na(+), K(+)-ATPase (NKA) is involved, through its role as a major driving force for electrochemical gradients, in a range of transmembrane transport processes. Maintenance of homeostasis in anadromous salmonids requires modulation of several gill ion secretory proteins as part of the preparatory adaptation and acclimation to marine life. Atlantic salmon smolts were exposed to combinations of low pH and inorganic aluminum (acid/Al(i)) in freshwater (FW) and were then transferred to seawater (SW) for studies of post-smolt performance. Gill mRNA levels of four NKA-alpha isoforms (alpha1a, alpha1b, alpha1c and alpha3) of the catalytic NKA subunit and NKA enzyme activity were measured. Moderate acid/Al treatment (MOD, pH 5.9+/-0.3, 15+/-9microgl(-1)Al(i)) prevented the FW preparatory increase in NKA activity observed in control (CON, pH 6.9+/-0.1, 8+/-3microgl(-1)Al(i)) smolts, while high acid/Al treatment (SEV, pH 5.6+/-0.2, 30+/-7microgl(-1)Al(i)) caused a rapid and persistent reduction in NKA activity. Correspondingly, a 3.3-fold increase in plasma glucose levels in the SEV groups concurrent with a decrease in plasma chloride levels suggest that acid/Al exposed fish were stressed and experienced problems maintaining ion homeostasis. Gill NKA activities in acid/Al exposed groups were re-established after 28 days in SW. Both long (9 days) and short-term (2.5 days) treatments had significant impact on isoform-specific Na(+), K(+)-ATPase alpha-subunit mRNA abundance in the FW period. Acid/Al exposed groups lacked the preparatory increases in all NKA-alpha isoform mRNA levels seen in the CON group, except for alpha1a. In contrast to the other isoforms measured, alpha1a mRNA abundance decreased sharply upon SW transfer, supporting the hypothesis of isozyme shifting as a mechanism of altering the gill from an ion absorbing to an ion excreting tissue during smoltification and SW exposure. Adult return rates to the Imsa river were significantly reduced both in short-term (78% of controls) and long-term (55% of controls) acid/Al exposures, emphasising the physiological and ecological consequences of acid/Al exposure during smoltification.


Assuntos
Alumínio/toxicidade , Brânquias/enzimologia , Salmo salar/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Água/química , Migração Animal , Animais , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Isoenzimas , Subunidades Proteicas , Poluentes Químicos da Água/toxicidade
13.
Artigo em Inglês | MEDLINE | ID: mdl-20096365

RESUMO

This study investigates the effect of diet during early development on growth and metabolic capacity in the juvenile stage of Atlantic cod. Growth in three groups of Atlantic cod juveniles (10-70 g) was measured at two salinities (15 per thousand or 32 per thousand) in combination with two temperatures (10 degrees C or 14 degrees C). Groups of cod from a single egg batch differed by having been fed with rotifers (R) or natural zooplankton (Z) during the first 36 days post hatch. A third group was fed zooplankton from 1 to 22 dph, after which diet changed to rotifers from 22 to 36 dph (ZRZ). All fish were weaned at 36 dph. Juveniles from the Z and ZRZ groups performed equally well under all experimental conditions, but fish that had received rotifers as a larval diet showed overall significantly lower growth rates. Growth was significantly enhanced by reduced salinity. Metabolic enzyme activity and relative myosin mRNA expression levels were not affected by larval diet. Muscle AAT and MDH were affected by salinity while these enzymes in liver tissue were affected by the interaction between salinity and temperature. Metabolic enzymes were stronger correlated with fish size than growth rates. Our results indicate that larval diet has a pronounced effect on juvenile growth rates under varying environmental conditions as optimal larval diet (zooplankton) increased juvenile growth rates significantly. Metabolic enzyme activity and relative myosin mRNA expression were not affected by larval history, which suggests that the persisting juvenile growth difference is not a result of differing metabolic capacity.


Assuntos
Gadus morhua/crescimento & desenvolvimento , Gadus morhua/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Sequência de Bases , Primers do DNA/genética , Dieta , Gadus morhua/genética , L-Lactato Desidrogenase/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Fígado/metabolismo , Malato Desidrogenase/metabolismo , Músculos/metabolismo , Miosinas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rotíferos , Salinidade , Temperatura , Zooplâncton
14.
Gen Comp Endocrinol ; 162(3): 307-12, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19362558

RESUMO

The present study was conducted to establish a homologous radioimmunoassay (RIA) for quantifying plasma leptin (Lep) levels in salmonid species, and to study Lep levels in relation to nutritional status. A part of the Lep peptide, a 14 amino acid long sequence, identical between a Salmo and an Oncorhynchus species was synthesised. Polyclonal antibodies were raised in rabbit against this antigen and both were subsequently used in the development of a RIA protocol for assessing plasma Lep levels. The limit of detection of the assay was 0.3 nM, and intra- and interassay coefficient of variation (CV) were 8.4% and 13%, respectively. Apart from Atlantic salmon and rainbow trout, the assay exhibits measuring parallelism for a range of fish species, including arctic char, Atlantic cod and turbot, suggesting that the established RIA is useful for quantifying Lep levels in several fish species. The RIA indicates that Lep is found in salmonid plasma at levels of 0.5-5 nM, which is comparable with other peptide hormones, and well within the measuring range of the RIA. A study of fed and fasted rainbow trout showed elevated plasma Lep levels during fasting. In addition there was no correlation between Lep levels and condition factor. These data suggest that the relation between circulating Lep levels and energy status differs from that in mammals. While Lep is linked to energy balance, it may not act as an adiposity signal in salmonids, possibly pointing to functional divergence among ectothermic and endothermic vertebrates.


Assuntos
Jejum/sangue , Leptina/sangue , Oncorhynchus mykiss/sangue , Radioimunoensaio/métodos , Animais , Especificidade de Anticorpos/imunologia , Peso Corporal/fisiologia , Pesos e Medidas Corporais , Jejum/fisiologia , Linguados/sangue , Gadiformes/sangue , Hormônio do Crescimento/sangue , Leptina/imunologia , Oncorhynchus mykiss/imunologia , Salmo salar/sangue , Salmo salar/imunologia
15.
Gen Comp Endocrinol ; 162(2): 160-71, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19332070

RESUMO

Key peptide hormones involved in the control of appetite in vertebrates were identified, their genes characterized and their regulation studied in Atlantic salmon: two agouti-related proteins (AgRP), cocaine- and amphetamine-regulated transcript (CART) and neuropeptide Y (NPY). The AgRP-1 and AgRP-2 genes encode prepro-proteins of 142- and 117-amino acids, respectively. The deduced AgRP-2 protein has 10 cysteine residues in the C-terminal polycysteine domain, while the AgRP-1 lacks the 6th and 7th cysteine residues observed in other species. AgRP-1 was principally expressed in the pituitary and skin, while AgRP-2 was highly expressed in the mid-gut, red muscle and gonads. The CART gene, encoding 118-amino acids, was strongly expressed in the brain and eye. In addition to salmon CART, we identified three to six variants of the CART gene in lower vertebrates by mining available databases. The salmon NPY gene, encoding 100-amino acids, was mainly expressed in the brain and eye. AgRP-1 and CART mRNA levels in the brain decreased after 6 days of fasting while AgRP-2 and NPY showed no significant change, suggesting that AgRP-1 and CART are involved in feeding regulation in Atlantic salmon. The identification of multiple variants of these appetite-regulating genes emphasizes the importance to further investigate the complex regulation of these genes.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Proteínas de Peixes/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeo Y/metabolismo , Salmo salar/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Evolução Molecular , Regulação da Expressão Gênica , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência
16.
Comp Biochem Physiol A Mol Integr Physiol ; 151(4): 698-704, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18790069

RESUMO

To elucidate possible mechanisms behind the endocrine control of parr-smolt transformation, the daily plasma profiles in thyroid hormones (TH; free thyroxine (FT(4)), total thyroxine (TT(4)), and total 3,5,3'-triiodothyronine (TT(3))), growth hormone (GH) and cortisol were studied in Atlantic salmon parr and smolts under simulated-natural winter (8 L:16D) and spring (16.5 L:7.5D) photoperiods, respectively. Overall, TT(4), TT(3) and GH levels were higher in smolts than in parr, whereas FT(4) levels fluctuated within the same range in parr and smolts. Significant diurnal changes in plasma TH were present in parr. Both FT(4) and TT(4) levels increased during the photophase and decreased during the scotophase, while TT(3) levels followed an inverse pattern. Growth hormone showed no significant changes in parr. Changes in FT(4), TT(4), GH, and cortisol, but not TT(3), levels, were observed in smolts with peak levels during both the photophase and scotophase for FT(4), TT(4) and GH. Plasma cortisol was not assayed in parr but in smolts the peaks were associated with dusk and dawn. In addition to the general increases in TH, GH and cortisol, the distinct endocrine differences in nighttime levels between parr in the winter and smolts in the spring suggest different interactions between TH, GH, cortisol and melatonin at these different time points. These spring scotophase endocrine profiles may represent synergistic hormone interactions that promote smolt development, similar to the synergistic endocrine interactions shown to accelerate anuran metamorphosis. The variations in these diurnal rhythms between parr and smolts may represent part of the endocrine mechanism for the translation of seasonal information during salmon smoltification.


Assuntos
Hormônio do Crescimento/sangue , Hidrocortisona/sangue , Salmo salar/sangue , Hormônios Tireóideos/sangue , Animais , Ritmo Circadiano , Metamorfose Biológica , Fotoperíodo , Salmo salar/crescimento & desenvolvimento , Estações do Ano , Tiroxina/sangue , Tri-Iodotironina/sangue
17.
Artigo em Inglês | MEDLINE | ID: mdl-18577460

RESUMO

The effects of photoperiod and feeding regimes on plasma IGF-I levels and their relationship with growth rate of juvenile halibut (initial mean weight 364 g) were investigated by rearing fish under five different photoperiod regimes and two feeding regimes for 14 months. The entire photoperiod experiment was divided into 3 phases where the fish in each phase were exposed to either natural photoperiod (N), stimulated photoperiod with long day and short night (S) or continuous light (L). Thus, the following five photoperiod combinations were tested: a) Control group (NNN) b) Group 2A (NLN) c) Group 2B (NNL) d) Long day-natural group (SNN) e) Production group (LNN). In addition, the Control group was split into two parts and fed according to two different feeding regimes: a) Continuous fed group: Fish fed every day. b) Starvation/re-fed group: Fish were starved for 5 weeks and then re-fed for 10 weeks, and the treatment repeated during the whole experimental period. The analyses of IGF-I were performed from individually tagged fish in all groups in September 2005 and March 2006. In order to test how rapidly starvation affects circulating IGF-I levels samples were taken from the Starvation/re-fed group after a 10 days starvation (September) and immediately after 10 weeks of feeding (March). A significant relationship between IGF-I levels and individual growth in the preceding period and photoperiod and starvation treatment was found on both occasions. In conclusion, the present study indicates that plasma IGF-I levels are correlated to growth in Atlantic halibut, and affected by photoperiod treatment or compensatory growth during re-feeding. Correlation between individual growth rate and IGF-I levels was low, but significant, highlighting the complexity of how environmental factors affect the endocrine and physiological regulation of growth in fish.


Assuntos
Comportamento Alimentar , Linguado/sangue , Linguado/crescimento & desenvolvimento , Fator de Crescimento Insulin-Like I/metabolismo , Fotoperíodo , Animais
18.
Gen Comp Endocrinol ; 155(3): 762-72, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17904138

RESUMO

The present study compares developmental changes in plasma levels of growth hormone (GH), insulin-like growth factor I (IGF-I) and cortisol, and mRNA levels of their receptors and the prolactin receptor (PRLR) in the gill of anadromous and landlocked Atlantic salmon during the spring parr-smolt transformation (smoltification) period and following four days and one month seawater (SW) acclimation. Plasma GH and gill GH receptor (GHR) mRNA levels increased continuously during the spring smoltification period in the anadromous, but not in landlocked salmon. There were no differences in plasma IGF-I levels between strains, or any increase during smoltification. Gill IGF-I and IGF-I receptor (IGF-IR) mRNA levels increased in anadromous salmon during smoltification, with no changes observed in landlocked fish. Gill PRLR mRNA levels remained stable in both strains during spring. Plasma cortisol levels in anadromous salmon increased 5-fold in May and June, but not in landlocked salmon. Gill glucocorticoid receptor (GR) mRNA levels were elevated in both strains at the time of peak smoltification in anadromous salmon, while mineralocorticoid receptor (MR) mRNA levels remained stable. Only anadromous salmon showed an increase of gill 11beta-hydroxysteroid dehydrogenase type-2 (11beta-HSD2) mRNA levels in May. GH and gill GHR mRNA levels increased in both strains following four days of SW exposure in mid-May, whereas only the anadromous salmon displayed elevated plasma GH and GHR mRNA after one month in SW. Plasma IGF-I increased after four days in SW in both strains, decreasing in both strains after one month in SW. Gill IGF-I mRNA levels were only increased in landlocked salmon after 4days in SW. Gill IGF-IR mRNA levels in SW did not differ from FW levels in either strain. Gill PRLR mRNA did not change after four days of SW exposure, and decreased in both strains after one month in SW. Plasma cortisol levels did not change following SW exposure in either strain. Gill GR, 11beta-HSD2 and MR mRNA levels increased after four days in SW in both strains, whereas only the anadromous strain maintained elevated gill GR and 11beta-HSD2 mRNA levels after one month in SW. The results indicate that hormones and receptors of the GH and cortisol axes are present at significantly lower levels during spring development and SW acclimation in landlocked relative to anadromous salmon. These findings suggest that attenuation of GH and cortisol axes may, at least partially, result in reduced preparatory upregulation of key gill ion-secretory proteins, possibly a result of reduced selection pressure for marine adaptations in landlocked salmon.


Assuntos
Aclimatação/genética , Sistema Endócrino/fisiologia , Salmo salar/crescimento & desenvolvimento , Salmo salar/fisiologia , Estações do Ano , Água do Mar , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Aclimatação/fisiologia , Fatores Etários , Migração Animal/fisiologia , Animais , Ecossistema , Sistema Endócrino/metabolismo , Brânquias/metabolismo , Hormônio do Crescimento/sangue , Hormônio do Crescimento/genética , Hidrocortisona/sangue , Fator de Crescimento Insulin-Like I/análise , Fator de Crescimento Insulin-Like I/metabolismo , RNA Mensageiro/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo , Salmo salar/sangue , Salmo salar/genética
19.
J Exp Biol ; 210(Pt 16): 2885-96, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17690237

RESUMO

This study examines changes in gill Na(+),K(+)-ATPase (NKA) alpha- and beta-subunit isoforms, Na(+),K(+),2Cl(-) cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR I and II) in anadromous and landlocked strains of Atlantic salmon during parr-smolt transformation, and after seawater (SW) transfer in May/June. Gill NKA activity increased from February through April, May and June among both strains in freshwater (FW), with peak enzyme activity in the landlocked salmon being 50% below that of the anadromous fish in May and June. Gill NKA-alpha1b, -alpha3, -beta(1) and NKCC mRNA levels in anadromous salmon increased transiently, reaching peak levels in smolts in April/May, whereas no similar smolt-related upregulation of these transcripts occurred in juvenile landlocked salmon. Gill NKA-alpha1a mRNA decreased significantly in anadromous salmon from February through June, whereas alpha1a levels in landlocked salmon, after an initial decrease in April, remained significantly higher than those of the anadromous smolts in May and June. Following SW transfer, gill NKA-alpha1b and NKCC mRNA increased in both strains, whereas NKA-alpha1a decreased. Both strains exhibited a transient increase in gill NKA alpha-protein abundance, with peak levels in May. Gill alpha-protein abundance was lower in SW than corresponding FW values in June. Gill NKCC protein abundance increased transiently in anadromous fish, with peak levels in May, whereas a slight increase was observed in landlocked salmon in May, increasing to peak levels in June. Gill CFTR I mRNA levels increased significantly from February to April in both strains, followed by a slight, though not significant increase in May and June. CFTR I mRNA levels were significantly lower in landlocked than anadromous salmon in April/June. Gill CFTR II mRNA levels did not change significantly in either strain. Our findings demonstrates that differential expression of gill NKA-alpha1a, -alpha1b and -alpha3 isoforms may be important for potential functional differences in NKA, both during preparatory development and during salinity adjustments in salmon. Furthermore, landlocked salmon have lost some of the unique preparatory upregulation of gill NKA, NKCC and, to some extent, CFTR anion channel associated with the development of hypo-osmoregulatory ability in anadromous salmon.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulação da Expressão Gênica , Salmo salar/crescimento & desenvolvimento , Salmo salar/metabolismo , Simportadores de Cloreto de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/genética , Migração Animal , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Ecossistema , Brânquias/metabolismo , Isoformas de Proteínas , Subunidades Proteicas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Salmo salar/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Fatores de Tempo , Equilíbrio Hidroeletrolítico/fisiologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-17433886

RESUMO

In a preliminary study, 121 individually tagged juvenile Atlantic cod (Gadus morhua) were classified according to their haemoglobin genotypes into four groups, i.e., two main haemoglobin genotypes [Hb-I(1/2), Hb-I(2/2)] and two sub-types [Hb-I(1/2b), Hb-I(2/2b)], and reared for 3 months at 10 degrees C, 13 degrees C and T-step (fish reared at 16 degrees C and then subsequently moved to 13 and later to 10 degrees C). Overall growth rates across temperatures were 10% and 19% higher in the Hb-I(2/2b), Hb-I(1/2b) sub-types compared to corresponding Hb-I(2/2) and Hb-I(1/2) main types, respectively. Individual growth rate trajectories varied between the genotypes at all temperatures studied. Our study indicates that under certain environmental conditions higher growth in the two sub-types compared to the main genotypes could be expected. This may indicate difference in other physiological characters not studied here, but seen in previous studies, i.e., oxygen affinity and competitive performance.


Assuntos
Gadus morhua/crescimento & desenvolvimento , Gadus morhua/genética , Hemoglobinas/genética , Animais , Peso Corporal , Genótipo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...